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SUMMARY

Sound from wind turbines involves a number of sound production mechanisms
related to different interactions between the turbine blades and the air. An
important contribution to the low frequency part of the sound spectrum is due
to the sudden variation in air flow which the blade encounters when it passes the
tower: the angle of attack of the incoming air suddenly deviates from the angle
that is optimized for the mean flow. Hitherto, low-frequency sound from wind
turbines has not been shown to be a major factor contributing to annoyance. This
seems reasonable as the blade passing frequency is of the order of one hertz where
the human auditory system is relatively insensitive. This argument, however,
obscures a very relevant effect: the blade passing frequency modulates well audible,
higher-frequency sounds and thus creates periodic sound: blade swish. This effect
is stronger at night because in a stable atmosphere there is a greater difference
between rotor averaged and near-tower wind speed. Measurements have shown
that additional turbines can interact to further amplify this effect. Theoretically the
resulting fluctuations in sound level will be clearly perceptible to human hearing.
This is confirmed by residents near wind turbines with the same common obser-
vation: often late in the afternoon or in the evening the turbine sound acquires a
distinct ‘beating’ character, the rhythm of which is in agreement with the blade
passing frequency. It is clear from the observations that this is associated to a
change toward a higher atmospheric stability. The effect of stronger fluctuations
on annoyance has not been investigated as such, although it is highly relevant
because a) the effect is stronger for modern (that is: tall) wind turbines, and b)
more people in Europe will be living close to these wind turbines as a result of
the growth of wind energy projects.

I. INTRODUCTION

Modern onshore wind turbines have peak electric power outputs of around 2 Mw
and tower heights of 80 to 100 meters. In 2003, 75% of the global wind power peak
electric output of 40 Gw was installed in the European Union. The original European
target for 2010 was 40 Gw, but the European Wind Energy Association have already
set a new target for 2010 of 75 Gw, of which 10 Gw is projected off-shore, while
others have forecast a peak output of 120 Gw for that year [1]. Whether this growth
will actually occur is uncertain; with the proportional increase of wind energy in total
electric power the difficulties and costs of integrating large scale windpower with
respect to grid capacity and stability, reserve capacity and CO, emission reductions
are becoming more prominent (see, e.g., [31, 32]). However, further expansion of
wind energy is to be expected, and as a result of this (predominantly on-shore)
growth an increasing number of people may face the prospect of living near wind
farms, and have reason to inquire and perhaps be worried about their environmen-
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tal impact. Visual intrusion, intermittent reflections on the turbine blades, as well as
intermittent shadows (caused when the rotating blades pass between the viewer and
the sun), and sound, are usually considered potentially negative impacts.

Atmospheric stability has hitherto not been considered with respect to wind turbine
sound. However, at the heights that are reached by modern, tall wind turbines the
effect has become increasingly important, from an energetic as well as acoustical
point of view.

In an earlier paper [2] it has been shown that in a stable atmosphere the sound
level due to wind turbines is higher than is expected from sound production based
on simple logarithmic extrapolation from reference wind speeds. The present paper
explores the effect of atmospheric stability on the periodic level changes known as
‘blade swish’. In the next two sections three possibly relevant effects of a change in
atmospheric stability are identified and investigated from a theoretical point of view.
All effects result in a higher level of blade swish. Then, in section 4, we will turn
to measurement results and show that measured results can be explained by these
predicted effects. Finally, in section 5, the results are put in the context of human
perception. It can now be understood why in a stable atmosphere (but not in an
unstable atmosphere) wind turbine sound is perceived as a fluctuating sound.

2. SOURCES OF WIND TURBINE SOUND

There are many publications on the nature and power of turbine sound. See, e.g., the
studies by Lowson [3] and Grosveld [4], and the reviews by Hubbard and Shepherd
[5] and Wagner et al [6]. A short introduction on wind aeroacoustics will be given
to elucidate the most important sound producing mechanisms.

If an air flow is smooth around a (streamlined) body, it will generate very little
sound. For high speeds and/or over longer lengths the flow in the boundary layer
between the body and the main flow becomes turbulent. The rapid turbulent velocity
changes at the surface cause sound with frequencies related to the rate of the velocity
changes. The turbulent boundary layer at the downstream end of an airfoil produces
trailing edge sound, which is the dominant audible sound from modern turbines.

As is the case for aircraft wings, the air flow around a wind turbine blade generates
lift. An air foil performs best when lift is maximised and drag (flow resistance) is
minimised. Both are determined by the angle of attack: the angle (o) between the
incoming flow and the blade chord (line between front and rear edge; see figure 1).
When the angle of attack increases from its optimal value the turbulent boundary
layer on the suction (low pressure) side grows in thickness, thereby decreasing power
performance and increasing sound level. For high angles of attack this eventually
leads to stall, that is: a dramatic reduction in lift.

Apart from this turbulence inherent to an airfoil, the atmosphere itself is turbulent
over a wide range of frequencies and sizes. Turbulence can be defined as changes
over time and space in wind velocity and direction, resulting in velocity components
normal to the airfoil varying with the turbulence frequency causing in-flow turbulent
sound. Atmospheric turbulence energy has a maximum at a frequency that depends
on height and on atmospheric stability. For wind turbine altitudes this peak frequency
is of an order of magnitude of once per minute (0.017 Hz). The associated eddy
(whirl) scale is of the order of magnitude of several hundreds of meters [7] in an
unstable atmosphere, less in a stable atmosphere. Eddy size and turbulence strength
decrease at higher frequency, and vanish due to viscous friction when they have
reached a size of approximately one millimetre.

Air velocity

. Blade velocity
due to rotation

Velocit
oY ° \ Wind
; ; ; speed
incoming air / n

Figure | Flow impinging on a turbine blade.
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A third sound producing mechanism is the response of the blade to the change in
lift when it passes the tower. The wind is slowed down by the tower which changes
the angle of attack. The resulting sideways movement of the blade causes thickness
sound at the blade passing frequency and its harmonics.

A more thorough review of these three sound production mechanisms is given in
Appendix I, where frequency ranges and sound levels are quantified in so far as rele-
vant for the present paper. A modern wind turbine sound spectrum can now be
divided in (overlapping) regions corresponding to these three mechanisms:

1. Infrasound frequency (f < 30 Hz): the thickness sound is tonal, the spectrum
containing peaks at the blade passing frequency f;; and its harmonics.

2. Low frequency: in-flow turbulent sound is broad-band noise with a maximum
level at approximately 10 Hz and a slope of 3—-6 dB per octave.

3. High frequency: trailing edge (TE) sound is noise with a maximum level at
500-1000 Hz for the central octave band, decreasing by 11 dB for neighbouring
octave bands and more for further octave bands.

Sound originating from the generator or the transmission gear has decreased in level
in the past decades and has become irrelevant when considering annoyance for resi-
dents. As thickness sound is not relevant for direct perception, turbulent flow is the
dominant cause of (audible) sound for modern wind turbines. It is broad-band noise
with no tonal components and only a little variation, known as blade swish. Blade
swish is sound due to the regular increase in trailing edge sound whenever a blade
passes the tower. Trailing edge (TE) sound level is proportional to 50 log M (see
equation A4 in appendix), where M is the Mach number of the air impinging on the
blade. TE sound level therefore increases steeply with blade speed and is highest at the
high velocity blade tips. Swish thus originates predominantly at the tips.

Sound from downwind rotors, i.e. with the rotor downwind from the tower, was
considered problematic as it was perceived as a pulsating sound (see appendix). For
modern upwind rotors this variation in sound level is weaker. It is not thought to be
relevant for annoyance and considered to become less pronounced with increasing dis-
tance due to loss of the effect of directivity, due to relatively high absorption at swish
frequencies, and because of the increased masking effect of background noise [8].
However, several effects that increase the level of the swishing sound and are related
to increasing atmospheric stability have not been taken into account as yet. Possible
effects will be considered before we turn to measurement results.

3. EFFECT OF ATMOSPHERIC STABILITY ON WIND TURBINE SOUND
The wind speed v, at height h in the atmosphere can be written as:

where reference height h, . is usually 10 m [2, 7]. The relation is suitable where h is
at least several times the roughness length. At high altitudes the wind profile will
not follow (1), as eventually a more or less constant wind speed (the geostrophic
wind) will be attained. At higher altitudes in a stable atmosphere there may be a
decrease in wind speed when a nocturnal ‘jet’ develops. The maximum in this jet is
caused by a transfer of kinetic energy from the near ground air that decouples from
higher air masses as large, thermally induced eddies vanish because of ground cool-
ing. In fact, reversal of the usual near-ground diurnal pattern of low wind speeds at
night and higher wind speeds in daytime is a common phenomenon at higher alti-
tudes over land in clear nights [9, 10, 11]. Over large bodies of water the phenome-
non may be seasonal as stability occurs more often when the water is relatively cold
(winter, spring). This may also be accompanied by a maximum in wind velocity at a
higher altitude [12].

In a neutral atmosphere the wind profile can also be modelled with the well
known logarithmic or adiabatic profile, where relative wind speed v, /v, depends on
height and surface roughness. This model is widely (and, as yet, only) used in
relation to wind turbine sound (see, e.g., [8] or [14]). With regard to wind power

Vol. 24 No. | 2005

o 2

—



The Effect of Atmospheric Stability on Low Frequency Modulated Sound

more attention is being paid to stability effects and thus to other wind profile models

[see, e.g., 10, 11, 12, 15, 16]. Accurate wind speed profiles can be calculated with a

diabatic wind speed model where stability corrections are added to the adiabatic

profile (see, e.g., [9] or [13]).

Equation (1) has no theoretical basis, but often provides a good fit to the vertical
wind profile, especially when the atmosphere is non-neutral. In flat terrain the stability
exponent m has a value of 0.1 and more. In daytime or in windy nights (0.1 < m <
0.2) equation (1) does not deviate much from the logarithmic wind profile: for alti-
tudes up to 100 m and low vegetation (roughness length < 10 cm), wind velocities
calculated with equation 1 agree within 20% with the logarithmic wind profile.

For a neutral atmosphere, occurring under heavy clouding and/or in strong winds,
m has a value of approx. 0.2. In an unstable atmosphere -occurring in daytime- thermal
effects caused by ground heating are dominant. Then m has a lower value, down to
approx. 0.1. In a stable atmosphere vertical movements are damped because of ground
cooling. One would then eventually expect a parabolic wind profile, as is found in
laminar flow, corresponding to a value of m of 0.7 = \/% . Our measurements near the
Rhede wind farm (53° 6.2' latitude, 7° 12.6" longitude) at the German-Dutch border
[2] yielded values of m up to 0.6. A sample (averages over 0:00-0:30 GMT of each
first night of the month in 1973) from data from a 200 m high tower in flat, agricul-
tural land [27] shows that the theoretical value is indeed reached: in ten out of the
twelve samples there was a temperature inversion in the lower 120 m, indicating
atmospheric stability. In six samples the temperature increased with more than 1 °C
from 10 to 120 m height and the exponent m (calculated from (1): m = log(vgy/v,,)/
log(8)) was 0.43, 0.44, 0.55, 0.58, 0.67 and 0.72. Comparable values have been esti-
mated in the US Midwest [15] and at a Spanish plateau [16]. In the following text
we will use a value m = 0.15 for a daytime atmosphere (unstable — neutral), m = 0.4
for a stable, and m = 0.65 for a very stable atmosphere. These values will be used for
altitudes between 10 and 120 m.

The magnitude of the effects of increasing stability depends on wind turbine
properties such as speed, diameter and height. We will use the dimensions of the
wind turbines in the Rhede wind farm, that are typical for a modem 1.5-2 MW wind
turbine: hub height 100 m, blade length 35 m and rotational speed increasing with
wind speed up to a maximum value of QR = 73 m/s (at 20 rpm).

There are now three factors influencing blade swish level when the atmosphere
becomes more stable: a) the higher wind speed gradient, b) the higher wind direction
gradient, and c) the relative absence of large scale turbulence.

a.  Wind speed gradient. Rotational speed is determined by a rotor averaged wind
speed. With increasing atmospheric stability the difference in wind speed between
the upper and lower part of the rotor increases. Suppose that the wind speed at
hub height is v,,, = 14 m/s, corresponding to v,;, = 9.8 m/s in a neutral atmos-
phere in flat open grass land (roughness length 4 cm). Then in daytime (mm = 0.15)
the wind speed at the lowest point of the rotor would be v s = 13.1 m/s, at the
highest point v, = 14.6 m/s. As the blade angle does not change with rotation
angle, the difference between the low tip and hub height wind speeds causes a
change in angle of attack on the blade of Ao = 0.8° at 20 rpm (see appendix,
equation A7). Between the high tip and hub height the change is smaller: 0.5°.
In night-time (m = 0.4), at the same wind speed at hub height, v, is 11.8 m/s
causing a change in angle of attack at the lower tip relative to hub height of 1.8°
(at the high tip: v,35 = 15.8 m/s, Aa. = 1.5°). When the atmosphere is very stable
(m = 0.65), wind speed v = 10.5 m/s and the angle of attack on the low altitude
tip deviates 2.9° from the angle at hub height (at the high tip: v 5 = 17.0 m/s,
Aa = 2.5°).

In fact when the lower tip passes the tower there is a greater mismatch between
optimum and actual angle of attack o because there was already a change in
angle of attack related to the wind velocity deficit in front of the tower. For a
daytime atmosphere and with respect to the situation at hub height, the change
in o associated to a blade swish level of 1 = 0.5 dB is estimated as 2.1 = 0.4°
(see appendix, section C), part of which (0.8°) is due to the wind profile and
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the rest to the tower. The increase in o due to the stability related wind profile
change must be added to this daytime change in a. Thus, relative to the day-
time (unstable to neutral) atmosphere, the change in angle of attack when the
lower tip passes the mast increases with 1.0° in a stable atmosphere, and with
2.1° in a very stable atmosphere. The associated change in trailing edge (TE)
sound level, as calculated from equation A6 in the appendix, is 3.1 = 0.7 dB
for a stable and 5.0 = 0.8 dB for a very stable atmosphere (compared to 1 + 0.5
dB in daytime). The corresponding total A-weighted sound level will be some-
what less as trailing edge sound is not the only sound source (but it is the dom-
inant source; see section 4C).

At the high tip the change in angle of attack is smaller than for the low tip as
there is no (sudden) tower induced change to add to the wind gradient depen-
dent change. The change in angle of attack at the high tip in a very stable
atmosphere (2.5°) is comparable to the change at the low tip in daytime, and
this change is more gradual than for the low tip.

Thus we find that, for Vigo = 14 m/s, the 1-2 dB daytime blade swish level
increases to approx. 5 dB in a very stable atmosphere. The effect is stronger
when wind speed increases up to the point where friction turbulence overrides
stability and the atmosphere becomes neutral. The increase in trailing edge
sound level will be accompanied by a lower peak frequency (see appendix,
equation A2). For o = 5° the shift is one octave.

Wind direction gradient. In a stable atmosphere air masses at different alti-
tudes are only coupled by small scale turbulence and are therefore relatively
independent. Apart from a higher velocity gradient a higher wind direction
gradient is also possible, and with increasing height the wind direction may
change significantly. This wind direction shear will change the angle of attack
with height. Assuming the wind at hub height to be normal to the rotor, the
angle of attack will decrease below and increase above hub height (or vice
versa). This effect, however, is small: if we suppose a change in wind direction
of 20° over the rotor height at a wind velocity of 10 m/s, the change in angle
of attack between extreme tip positions at 20 rpm is only 0.25°, which is
negligible relative to the wind velocity shear.

Less turbulence. As was shown in an earlier study [2], in areas near a wind farm
an increase in blade swish pulse height (The term ‘pulse’ is used to indicate the
upward variation in sound level.) can be explained by the synchronization of
two or three pulse trains coming from the two or three closest turbines. In a
stable atmosphere wind turbines can run almost synchronously because the
absence of large scale turbulence leads to less variation superimposed on the
constant (average) wind speed at each turbine. In unstable conditions the aver-
age wind speed at both turbines will be equal, but instantaneous local wind
speeds will differ because of the presence of large, turbulent eddies at the scale
of the inter-turbine distance. In a stable atmosphere the turbulence scale
decreases with a factor up to 10, relative to the neutral atmosphere and even
more relative to an unstable atmosphere [17]. In stable conditions turbines in
a wind farm therefore experience a more similar wind and as a consequence
their instantaneous turbine speeds are more nearly equal. This is confirmed
by long term measurements by Nanahara et al. [18] who analysed coherence
of wind speeds between different locations in two coastal areas. At night
wind speeds at different locations were found to change more coherently than
they did at daytime [19]. The difference between night and day was not very
strong, probably because time of day on its own is not a sufficient indicator
for stability. The decay of coherence was however strongly correlated
with turbulence intensity, which in turn is closely correlated to stability. (In a
coastal location atmospheric stability also depends on wind direction as
landwards stability is a diurnal, but seawards a seasonal phenomenon. Also,
a fixed duration for all nights in a year does not coincide with the time
that the surface cools (between sundown and sunrise), which is a prerequisite
for stability.)
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Near the Rhede wind farm we found that, because of the near-synchronicity of
several turbines, sometimes two or three were in phase and the blade passing pulses
coincided, and then went out of phase again [2]. This would lead to a doubling (+3 dB)
or tripling (+5 dB) of pulse height. If in a (very) stable atmosphere individual swish
pulse heights are 3—-5 dB (see section 3a above), synchronicity at the Rhede wind farm
or similar configurations would thus lead to pulse heights of 6-10 dB.

Synchronicity here refers to the sound pulses from the different turbines as observed
at the location of the observer. So, pulses synchronise when they arrive simultane-
ously. This is determined by differences in phase (rotor position) between turbines
and in propagation distances of the sound from the turbines. Phase differences
between turbine rotors occur because turbines are not connected and because of
differences in actual performance. The place where synchronicity is observed will
change when the phase difference between turbines changes. With exact synchronicity
there would be a fixed interference pattern, with synchronicity at fixed spots.
Because of near-synchronicity however, synchronicity will change over time and
place and an observer will hear coinciding pulses for part of the time only.

A second effect of the decrease in turbulence strength is that in-flow turbulent
sound level also decreases. The resulting decrease in broad band sound level
lowers the minimum in the temporal variations, thereby increasing modulation
depth.

We conclude that the higher wind speed gradient and (near-) synchronicity
increase blade swish levels at some distance from a wind farm. The higher infrasound
level due to extra blade loading is not perceptible because of the high hearing
threshold at the very low blade passing frequency. However, the effect of added
boundary layer turbulence on the blade increases the levels at the higher frequencies
that already were dominating the most audible part of the sound. Near a wind farm
the variation in sound level will depend on the distances of the wind turbines rela-
tive to the observer: the level increase due to several turbines will reach higher lev-
els when more turbines are at approximately equal distances and thus contribute
equal immission levels. The increase in level variation, or beating, is thus at well-
audible frequencies and has a repetition rate equal to the blade passing frequency.

Thus, theoretically it can be concluded that in stable conditions (low ambient
sound level, high turbine sound power and higher modulation or swish level) wind
turbine sound can be heard at greater distances and is of lower frequency due to
absorption and the frequency shift of swish sound. It is thus a louder and more low-
frequency ‘thumping’ sound and less the swishing sound than observed close to a
daytime wind turbine.

4. MEASUREMENT RESULTS

4.1. Locations

In the summers of 2002 and 2004 wind turbine sounds have been recorded in and
near the Rhede wind farm on the German-Dutch border. The farm (figure 2) has a
straight south to north row of ten turbines at approximately 300 m intervals, running
parallel to the border, and seven less regularly spaced turbines east of the straight
row. Each turbine is 98 m to the hub height, and has a blade length of 35 m, and pro-
duces nominally 1.8 MW electric power.

The measurement location at dwelling R is west of the turbines, 625 m from the
nearest turbine. The microphone position was at 4 m height and close to the house, but
with no reflections except from the ground. The measurement location at dwelling P,
870 m south of R, was 1.5 m above a paved terrace in front of the fcagade of the
dwelling at 750 m distance from the nearest turbine. The entire area is quiet, flat,
agricultural land with some trees close to the dwellings. There is little traffic and
there are no significant permanent human sound sources.

A third dwelling Z is in Boazum in the northern part of the Netherlands, 280 m
west of a single, two-speed turbine (45 m hub height, 23 m blade length, 20/26 rpm).
The area is again quiet, flat and agricultural. The immission measurement point is
at 1.5 m height above gravel near the dwelling. This measurement site is included
here to show that the influence of stability on blade swish levels occurs also with

JOURNAL OF LOW FREQUENCY NOISE, VIBRATION AND ACTIVE CONTROL



G.P. van den Berg

\*\Border
\
]
| ()
I 16
@)
o
(@]
]
1)
]
]
|
]
i % 9
N i @)
i o
{© o
]
1)
[}
1
!
0 500 1000 m
Figure 2 Turbines (grey circles) in and measurement locations (A,B,PR) near the Rhede wind farm; solid

lines are roads.

Table I. Overview of measurement locations and times
and of turbine speed and wind

Measurement Turbine speed Wind speed (m/s) Wind direction

Location Date Time (rpm) Vio Vi (° north)
Dwelling P June 3,2002 00:45 20 5 14 100
Turbine 7 June 3, 2002 06:30 19 5 15 100
Turbine | June 3,2002 06:45 19 5 15 100
Dwelling R

) Sep. 9, 2004 23:07 18 4 14 80
Turbine 16
DwellingZ  Oct. 18,2003 01:43 26 3 6 60

smaller, single turbines. At all locations near dwellings the microphone was fitted in
a 9 cm diameter foam wind screen.

Table I gives an overview of measurement (start) times and dates of observed
turbine speeds and of wind speed and direction, for situations for which results will
be given below. The wind speed at hub height v,  has been determined from tur-
bine rotation speed N or sound power level L ([2], the relation v, ,— N follows from
ref. 3 and 11 in [1]). The wind speed v,, at 10 m height was continuously measured
at or near location A, except for location Z, where data from several meteorological
stations were used showing that the wind was similar and nearly constant in the
entire nothern part of the Netherlands. In all cases there were no significant varia-
tions in wind speed at the time of measurement. Wind speed at the microphone was
lower than v, because of the low microphone height and shelter provided by trees
nearby. Wind direction is given in degrees relative to north and clockwise (90° is
east). The spectra near a turbine were measured with the microphone just above a
hard surface at ground level 100 m downwind of a turbine in compliance with IEC
61400 [14] as much as possible (non-compliance did not lead to differences in result
[2]; for reasons of non-compliance, see [34]). The levels plotted are immission levels:
measured Leq minus 6 dB correction for coherent reflection against the hard surface
[16]. The plotted levels near the dwellings are also immission levels: measured
Leq minus 3 dB correction for incoherent reflection at the facade for dwelling P, or
measured Leq without any correction for dwellings R and Z.
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At dwelling P at the time of measurement the beat in the turbine sound was very
pronounced. In the other measurements (dwellings R and Z) the beating was not as
loud. The measurements near turbine 16 and dwelling R at 23:07 on September 9
were performed simultaneously.

4.2. Frequency response of instruments

For the Rhede measurements sound was recorded on a TASCAM DA-1 DAT-recorder
with a precision 1in Sennheiser MKH 20 P48 microphone. The sound was then
sampled in 1-second intervals on a Larson Davis 2800 frequency analyser. From 1
to 10 000 Hz the frequency response of the DAT-recorder and LD2800 analyser
have been determined with a pure tone electrical signal as input. The LD2800
response is flat (=1 dB) for all frequencies. The DAT-recorder is a first order high
pass filter with a corner frequency of 2 Hz. The frequency response of the micro-
phone was of most influence and has been determined relative to a B&K !/2 in
microphone type 4189 with a known frequency response [20]. Equivalent spectral
sound levels with both microphones in the same sound field (approx. 10 cm mutual
distance) were compared. For frequencies of 2 Hz and above the entire measurement
chain is within 3 dB equivalent to a series of two high pass filters with corner
frequencies of f; = 4 Hz and f, = 9 Hz, or a transfer function equal to —20log[l +
(fl/f)z] -201og[l + ( fz/f)z]. For frequencies below 2 Hz this leads to high signal
reductions (< —40 dB) and consequentially low signal to (system) noise ratios.
Therefore values at frequencies < 2 Hz are not presented.

For the Boazum measurements sound was recorded on a Sharp MD-MT99 mini-
disc recorder with a 1in Sennheiser ME62 microphone. The frequency response of
this measurement chain is not known, but is assumed to be flat in the usual audio
frequency range. Simultaneous measurements of the broad band A-weighted sound
level were done with a precision (type 1) sound level meter. Absolute precision
is not required here as the minidisc recorded spectra are only used to demonstrate
relative spectral levels. Because of the ATRAC time coding of a signal, a minidisc
recording does not accurately follow a level change in a time interval < 11.6 ms.
This is insignificant in the present case as the ‘fast’ response time of a sound level
meter is much slower (125 ms).

4.3. Measured Emission and Immission Spectra

Recordings were made at evening, night or early morning. On June 3, 2002, sound
was recorded at dwelling P at around midnight and early in the morning near two
turbines (numbers 1 and 7). At P at these times a distinct beat was audible in the
wind turbine sound. In figure 3, 1/3 octave band spectra of the recorded sound at
P and at both turbines have been plotted. In each figure A, B and C, 200 sound pres-
sure spectra sampled in one-second intervals, as well as the energy averaged spectrum
of the 200 samples have been plotted. The standard deviation of 1/3 octave band levels
is typically 7 dB at very low frequencies, decreasing to approx. 1 dB at 1 kHz. The
correlation coefficient p between all unweighted 1/3 octave band levels and the overall
A-weighted sound level has also been plotted for each 1/3 octave band frequency.

For frequencies below approximately 10 Hz the sound is dominated by the thick-
ness sound associated with the blade passing frequency and harmonics. In the rest of
the infrasound region and upwards, in-flow turbulence is the dominant sound pro-
ducing mechanism. Gradually, at frequencies above 100 Hz, trailing edge sound
becomes the most dominant source, declining at high frequencies of one to several
kHz. Trailing edge sound is more pronounced at turbine 1 (T1) compared to turbine
7 (T7), causing a hump near 1000 Hz in the T1 spectra. At very high frequencies
(> 2 kHz) sometimes higher spectral levels occur due to birds.

It is clear from the spectra that most energy is found at lower frequencies. However,
most of this sound is not perceptible. To assess the infrasound level relevant to human
perception it can be expressed as a G-weighted level [30], With G-weighting sound
above the infrasound range is suppressed. The average infrasound perception threshold
is 95 dB(G) [28]. The measured G-weighted levels are 15-20 dB below this threshold:
80.5 and 81.1 dB(G) near turbines 1 and 7 respectively, and 76.4 dB(G) at the fagade.
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Figure 3 Left axis (in dB): 200 consecutive, unweighted and | second spaced I/3 octave band levels

(thin lines), and average spectral level (thick line) near turbines | and 7, and near dwelling P;
right axis: coefficient of correlation (line with markers) at each |/3 octave band frequency
between all 200 I/3 octave band levels and overall A-weighted levels.

The correlations show that variations in total A-weighted level near the turbines
are correlated with the 1/3 octave band levels with frequencies from 400 through
3150 Hz (where p > 0.4), which is trailing edge sound. This is one octave lower
(200 - 1600 Hz) for the sound at the facade: the higher frequencies were better
absorbed during propagation through the atmosphere.

The fagade spectra in figure 3C show a local minimum at 50-63 Hz, followed by
a local maximum at 80-100 Hz. (In a FFT spectrum minima are at 57 and 170 Hz,
maxima at 110 and 220 Hz.) This is caused by interference between the direct sound
wave and the wave reflected by the facade at 1.5 m from the microphone: for wave
lengths of approx. 6 m (55 Hz) this leads to destructive interference, for wave
lengths of 3 m (110 Hz) to constructive interference.

In figure 4A the three average spectra at the same locations as in figure 3A-C
have been plotted, but now for a total measurement time of approx. 9.5 (fagade),
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5 (T7) and 6 (T1) minutes. For each of these measurement periods the average of
the 5% of samples with the highest broad band A -weighted sound level (i.e. the
equivalent spectral level of the L, percentile) has also been plotted, as well as the
5% of samples with the lowest broad band level (L,). The range in A-weighted
broad band level can be defined as the difference between the highest and lowest
value: R, =L, - L, .. Similarly the range per 1/3 octave or octave band R,
can be defined by the difference in spectral levels correspondingto L, andL, . .
The difference between L, and L,y is a more stable value, avoiding possibly
incidental extreme values, especially when spectral data are used. Ry, o, is defined
as the difference in level between the 5% highest and the 5% lowest broad band
sound levels: R 5590 = =L,5- L, For spectral data, Rf!90 is the difference between
spectral levels associated with L, 5 and L, o5. Values of R, are plotted in the lower
part of figure 4A (here octave bandlevels have been used to avoid the somewhat
‘jumpy’ behaviour of the 1/3 octave band levels). Close to turbines 1 and 7 R, is
4.8 and 4.1 dB, respectively. Rbb’90 is 3.2 and 2.6 dB, which is almost the same as
R; gy (3.2 and 3.0 dB) at 10004000 Hz. Further away, at the facade, R, is compa-
rable to the near turbine values: 4.9 dB. Ry , at the facade is 3.3 dB and again
almost the same as maximum Rigy (3.5 dB) at 1000 Hz.

Also, close to the turbine there is a low frequency maximum in R ;o at 2 (or 8) Hz
that is also present at the facade, indicating that the modulation of trailing edge
sound is correlated in time with the infrasound caused by the blade movement.

Figure 4B presents similar plots for the average spectra and the L, and L,
spectra at dwelling R and near turbine T16 over a period of 16 minutes. Close to the
turbine the broadband Ry 00 is 3.7 dB; octave band ngo is highest (5.1 dB) at 1000 Hz.
Near R broad band Ry ,, is also 3.7 dB, and octave band R g, is highest
(4.0 dB) at 500 Hz. The R, ranges are 2.3-2.5 dB higher than the 90% ranges R o
A 25 second part of this 16 min period is shown in figure 5. The broad band level
L, changes with time at T16 and R, showing a more or less regular variation with a
period of approximately 1 s (= 1/f). In these measurements the infrasound level
was lower than in the previous measurements at dwelling P where beating was more
pronounced. G-weighted sound level during the 16 minutes at R was 70.4 dB(G),
and at T16 77.1 dB(G).

Finally figure 3C gives average spectra over a period of 16 minutes at dwelling Z.
Rigg is now highest (4.8 dB) at 1 kHz, and broadband Rip.00 is 4.3 dB (R, = 5.9 dB).
The turbine near Z is smaller and lower, but rotates faster than the Rhede turbines;
for a hub height wind speed of 6 m/s the expected calculated increase in trailing
edge sound for the lower tip relative to the day time situation is 2.0 = 0.8 dB for

55

NIRRT

50 1

45

0 5 1 5 20

25

Broad band level in dB(A)

Timeins

Figure 5 Broad band A-weighted immission sound level near turbine I7 (upper plot) and close to dwelling
R (lower plot).
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a stable, and 2.9 = 0.8 dB for a very stable atmosphere. For this turbine a peak
trailing edge sound level is expected (according to equation A2 in appendix) at a
frequency of 1550/a Hz = 400 — 800 Hz.

In all cases above the measured sound includes ambient background sound.
Ambient background sound level could not be determined separately at the same
locations because the wind turbine(s) could not be stopped (it has been shown
elsewhere that it is a flaw in noise regulation to make independent noise assessment
procedurally impossible because of its dependency on wind turbine owner’s consent
[34]). However, at audible frequencies it could be ascertained by ear that wind
turbine sound was dominant. At infrasound frequencies this could not be ascer-
tained. But if significant ambient sound were present, subtracting it from the
measured levels would lead to lower (infrasound) sound levels, which would not
change the conclusion, based on the G-weighted level, that measured infrasound
must be considered inaudible.

4.4. Beats Caused by Interaction of Several Wind Turbines

In the previous section we saw that measured variations in broad band sound level
(R,,,) were 4 to 6 dB. Figure 6 presents the time variation of the broad band A-weighted
level from the sound level at the facade of dwelling P over a one minute period [2].
In this night stable conditions prevailed (m = 0.45 from the wind speeds in table I).
Turbines 12 and 11 are closest at 710 and 750 m, followed by turbines 9 and 14 at
880 and 910 m. Other turbines are more than 1 km distant and have an at least 4 dB
lower immission level than the closest turbine has. The sequence in figure 6
begins when the turbine sound is noisy and constant within 2 dB. After some time
(at t = 155 s) regular pulses appear with a maximum height of 3 dB, followed by a
short period with louder (5 dB) and steeper (rise time up to 23 dB/s) pulses. The
pulse frequency is equal to the blade passing frequency. Then (t > 180 s) the pulses
become weaker and there is a light increase in wind speed.

This was one of the nights where a distinct beat was audible: a period with a
distinct beat alternating with a period with a weaker or no beat, repeated more or
less during the entire night. The pattern is consistent with three pulse trains of
slightly different frequencies [2].

In figure 7 the equivalent 1/3 octave band spectrum at the facade of P has been
plotted for the period of the beat (165 <t < 175 s in figure 6, spectra sampled at a
rate of 20 s7!), as well as the equivalent spectrum associated with the 5% highest
(L,s =52.3 dB(A)) and the 5% lowest (L, o5 = 47.7 dB(A)) broad band levels and
the difference between both. As in the similar spectra in figure 4 we see that the beat
corresponds to an increase at frequencies where trailing edge sound dominates: the
sound pulses correspond to 1/3 octave band levels between 200 and 1250 Hz and
are highest at 800 Hz. In figure 7 also the equivalent 1/3 octave band levels are plot-
ted for the period after beating where the wind was picking up slightly (t > 175 s in
figure 6). Here spectral levels above 400 Hz are the same or slightly lower as on
average at the time of beating, but at lower frequencies down to 80 Hz (related to
in-flow turbulence) levels now are 1 to 2 dB higher. The increase in the ‘more wind’
spectrum at high frequencies (> 2000 Hz) is probably from rustling tree leaves.

Figure 8 shows sound spectra for a period with a distinct beat (150 <t < 175 s in
figure 6), and a period with a weak or no beat (130 < t < 150 s). Each spectrum is
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Figure 6 Broad band A-weighted immission sound level at facade of dwelling P.
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Figure 8 Sound power spectrum of A-weighted broad band immission sound level at facade of dwelling P
when beating is distinctly or not audible and with slightly increased wind speed.

an FFT of 0.2 Hz line width from broad band A-weighted immission sound pressure
level values. The frequencies are therefore modulation, not sound frequencies. The
abscissa spans 20 dB. The spectra show that distinct beating is associated with
higher total A-weighted levels at the blade passing frequency and its harmonics. As
has been shown above, the higher level is related to the frequency range of trailing
edge sound, not to infrasound frequencies linked to thickness sound. When beating
is weaker but there is more wind (t > 175 s), the level of the odd harmonics (base
frequency k = 1, and k = 3) is lower than during ‘beat’, whereas the first two even
harmonics (k = 2, 4) are equally loud, indicating more distorted (less sinusoidal) and
lower level pulses. It is important to realize that the periodic variation as represented
in figure 8 is the result from a wind farm, not from a single turbine.

In long term measurements near the Rhede wind farm, where average and percentile
sound levels were determined over 5 minute periods, periods where wind turbine sound
was dominant could be selected with a criterion (Ryj o = L5 — L,o5 = 4 dB) implying
a fairly constant source with less than 4 dB variation for 90% of the time [2]. The
statistical distribution of the criterion values has been plotted in 1 dB intervals in
figure 9 for the two long term measurement locations A and B (see figure 2). Total
measurement times —with levels in compliance with the criterion- were 110 and
135 hours, respectively. Relative to dwellings P and R, one location (A, 400 m from
nearest turbine) is closer to the turbines, the other (B, 1500 m) is further. The figure
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Figure 9 Statistical distribution of level differences (in | dB-classes) between high and low sound levels

within 5 minute periods at 400 m (left) and 1500 m (right) from the nearest wind turbine.

shows that the criterion value (cut off at 4 dB) at both locations peaks at 2.5 dB.
Also plotted in figure 9 is the value of L, ~L Aag (while Ry, ) =<4 dB), peaking at
3.5 dB at both locations. Finally, the difference between maximum and minimum
level within 5 minute periods, L, - L, . = R peaks at 4.5 dB (location A)
and 5.5 dB (B). Where R, > 7 dB, the distributions are influenced by louder (non-
turbine) sounds, such as from birds. Extrapolation of the distribution from lower
values suggests that the maximum range R,; due to the wind farm is 8.5 dB (loca-
tion A) to 9.5 dB (B). This is 4 dB more than the most frequently occurring ranges
at both locations.

4.5. Summary of Results

In table II the level variations due to blade swish as determined in the previous
sections have been summarised. Some values not presented in the text have been
added. The ranges are presented as Ry, and R, o,. The latter is of course a lower
value as it leaves out high and low excursions occurring less than 10% of the time.
The time interval over which these level differences occur differ: from several up to
16 minutes for the short term measurements, where wind conditions can be presumed
constant, up to over 100 hours at locations A and B.

5. PERCEPTION OF WIND TURBINE SOUND

In areview of literature on wind turbine sound Pedersen concluded that wind turbine
noise was not studied in sufficient detail to be able to draw general conclusions,
but that the available studies indicated that at relatively low levels wind turbine sound
was more annoying than other sources of community noise such as traffic [21].
In a field study by Pedersen and Persson Waye [22] 8 of 40 respondents living in
dwellings with (calculated) maximum outdoor immission levels of 37.5 - 40.0 dB(A)
were very annoyed by the sound, and at levels above 40 dB(A) 9 of 25 respondents
were very annoyed. The correlation between sound level (in 2.5 dB classes) and
annoyance was significant (p < 0.001). In this field study annoyance was correlated
to descriptions of the sound characteristics, most strongly to swishing with a corre-
lation coefficient of 0.72 [22]. A high degree of annoyance is not expected at levels
below 40 dB(A), unless the sound has special features such as a low-frequency
components or an intermittent character [23]. Psychoacoustic characteristics of
wind turbine sound have been investigated by Persson-Waye et al. in a laboratory
setting with naive listeners (students not used to wind turbine sound): the most
annoying sound recorded from five different turbines were described as ‘swishing’,
‘lapping’ and ‘whistling’, the least annoying as ‘grinding’ and ‘low frequency’ [24].
People living close to wind turbines, interviewed by Pedersen et al., felt irritated
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Table Il. Level variation in modern wind turbine' sound due
to blade swish, in dB

Atmospheric R.y R

Location Reference condition Ly = Lamin Lys —bbf:%
Calculated results
Single turbine Section3a  neutral [5+05
Section3a  stable 3.0 =07
Section3a  very stable 50=08
Two turbines (very) stable ~ single + 3
Measured results
Single turbine [8] unspecified <3
Single turbine Near Tl fig. 24 48 32
Near T7 fig. 2A 4. 26
Near TI6 fig. 2B 6.0 37
dwelling Z fig. 2 stable 5.9 43
Multiple turbines dwelling R fig. 2B 6.2 3.1
facade dwelling P fig. 2A 49 33
facade P + beat fig. 5 5.4
Location A fig. 6A 4.5 (most frequent)

8.5 (maximum)
long term, stable
Location B fig. 6B 5.5 (mostfrquent)

9.5 (maximum)

notes:
'hub height 100 m, rotor diameter 70 m, 20 rpm
Yor this turbine (hub height 45 m, diameter 46 m, 26 rpm) Ry, < 3.7 dB was calculated

because of the intrusion of the wind turbines in their homes and gardens, especially
the swishing sound, the blinking shadows and constant rotation [25].

Our experience at distances of approx. 700 to 1500 m from the Rhede wind farm,
with the turbines rotating at high speed in a clear night and pronounced beating
audible, is that the sound resembles distant pile driving. When asked to describe the
sound of the turbines in this wind farm, a resident compares it to the surf on a rocky
coast. Another resident near a set of smaller wind turbines, likens the sound to that
of a racing rowing boat (where rowers simultaneously draw, also creating a periodic
swish). Several residents near single wind turbines remark that the sound often
changing to clapping, thumping or beating when night falls: ‘like a washing machine’.
It is common in all descriptions that there is noise (‘like a nearby motorway’, ‘a B747
constantly taking of”) with a periodic increase superimposed. In all cases the sound
acquires this more striking character late in the afternoon or at night, especially in
clear nights and downwind from a turbine.

Part of the relatively high annoyance level and the characterisation of wind turbine
sound as lapping, swishing, clapping or beating may be explained by the increased
fluctuation of the sound [2, 21]. Our results in table 2 show that in a stable atmos-
phere measured fluctuation levels are 4 to 6 dB for single turbines, and in long term
measurements (over many 5 minute periods) near the Rhede wind farm fluctuation
levels of approx. 5 dB are common but may reach values up to 9 dB.
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The level difference associated with an amplitude modulation (AM) factor mf is
AL = 20 log((1+mf)/(1-mf)). The modulation factor mf is the change in sound pres-
sure amplitude due to modulation, relative to the average amplitude. For AL < 9 dB
a good approximation (+5%) is mf = 0.055 AL. Now when AL rises from 3 dB, pre-
sumably a maximum value for a daytime (unstable or neutral) atmosphere, to 6 dB,
mf rises from 17% to 33%. For a maximum value of AL = 9 dB, mf is 50%.

Fluctuations are perceived as such when the modulation frequencies are less than
20 Hz. Human sensitivity for fluctuations is highest at f, , = 4 Hz, which is the
frequency typical for rhythm in music and speech [26], and for frequencies of
the modulated sound close to 1 kHz. For wind turbines we found that a typical
modulation frequency is 1 Hz, modulating the trailing edge sound that itself is at
frequencies of 500 — 1000 Hz. So human sensitivity for wind turbine sound fluctu-
ations is relatively high.

Fluctuation strength can be expressed in a percentage relative to the highest
perceptible fluctuation strength (100%) or in the unit vacil [26]. The reference value
for the absolute fluctuation strength is 1 vacil, equalling a 60 dB, 1 kHz tone, 100%
amplitude-modulated at 4 Hz [26].

For an AM pure tone as well as AM broad band noise, absolute fluctuations strength
is zero until AL = 3 dB, then increases approximately linearly with modulation depth
for values up to 1 vacil. For a broad band noise level L, the fluctuation strength F,
can be written as [26]:

_5.8(1.25mf — 0.25)(0.05L, - 1)
® T (£ /5Hz)? + (4Hz/f,.) + 1.5

vacil )

With typical values of f, ;=1 Hz and L, = 40 dB(A), this can be written as
F,, = 1.31(mf-0.2) vacil or, when AL <9 dB:

F, = 0.072(AL — 3.6)  vacil 3)

When AL increases from 3 to 6 dB, F,, increases from negligible to 0.18 vacil.
For the high fluctuation levels found at locations A and B (AL = 8 — 9 dB), F, is
0.32 to 0.39 vacil.

It can be concluded that, in a stable atmosphere, the fluctuations in modern wind
turbine sound can be readily perceived. However, as yet it is not clear how this
relates to possible annoyance. It can however be likened to the rhythmic beat of
music: pleasant when the music is appreciated, but distinctly intrusive when the
music is unwanted.

The hypothesis that these fluctuations are important, is supported by descriptions
of the character of wind turbine sound as ‘lapping’, ‘swishing’, ‘clapping’, “beating’
or ‘like the surf’. Those who visit a wind turbine in daytime will usually not hear
this and probably not realise that the sound can be rather different in conditions that
do not occur in daytime. This may add to the frustration of residents: “Being highly
affected by the wind turbines was hard to explain to people who have not had the
experiences themselves and the informants felt that they were not being believed”’
[25]. Persson-Waye et al. observed that, from five recorded different turbine sounds
“the more annoying noises were also paid attention to for a longer time”. This
supported the hypothesis that awareness of the noise and possibly the degree of
annoyance depended on the content (of intrusive character) of the sound [24].

Fluctuations with peak levels of 3 — 9 dB above a constant level may have effects
on sleep quality. The Dutch Health Council [33] states that “at a given L ; oht value,
the most unfavourable situation in terms of a particular direct biological effect of
night-time noise is not, as might be supposed, one characterised by a few loud noise
events per night. Rather, the worst scenario involves a number of noise events all
of which are roughly 5 dB(A) above the threshold for the effect in question.” For
transportation noise (road, rail, air traffic) the threshold for motility (movement),
a direct biological effect having a negative impact on sleep quality, is a sound exposure
level per sound event of SEL = 40 dB(A) in the bedroom [33]. The pulses in figure 6
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have SEL-values up to 50 dB(A), but were measured on the fagade. With an open
window facing the wind turbines indoor SEL-values may exceed the threshold level. In
other situations this of course depends on distance to and sound power of the turbines
and on the attenuation between facade and bedroom. It is not clear whether the con-
stant and relatively rapid repetition of wind turbine sound beats will have more or
less effect on sleep quality, compared to vehicle or airplane passages. Pedersen and
Persson Waye found that at dwellings where the (outdoor) sound level due to wind tur-
bines exceeded 35 dB(A), 16% of 128 respondents reported sleep disturbance by
this sound, of whom all but two slept with a window open in summer [22].

6. DISCUSSION AND CONCLUSION
Atmospheric stability has a significant effect on wind turbine sound, especially for
modern, tall turbines.

First, it is related to a change in wind profile causing strong, higher altitude,
winds while at the same time wind close to the ground may become relatively weak.
High sound immission levels may thus occur at low ambient sound levels, a fact that
has not been recognised in noise assessments where a neutral or unstable atmosphere
is usually implied. As a result, wind turbine sound that is masked by ambient wind-
related sound in daytime, may not be masked at night time. This has been dealt with
elsewhere [2].

Secondly, the change in wind profile causes a change in angle of attack on the
turbine blades. This increases the thickness (infra) sound level as well as the level
of trailing edge (TE) sound, especially when a blade passes the tower. TE sound
is modulated at the blade passing frequency, but it is a high frequency sound, well
audible and indeed the most dominant component of wind turbine noise. The peri-
odic increase in sound level when the blade passes the turbine tower, blade swish,
is a well known phenomenon. Less well known is the fact that increasing atmos-
pheric stability creates greater changes in the angle of attack over the rotor plane
that add up with the change near the tower. This results in a thicker turbulent TE
boundary layer, in turn causing a higher swish level and a shift to somewhat lower
frequencies. It can be shown theoretically that for a modern, tall wind turbine in flat,
open land the angle of attack at the blade tip passing the tower changes by approx. 2°
in daytime, but this value increases by 2° when the atmosphere becomes very stable.
The calculated rise in sound level during swish then increases from 1-2 dB to 4-6 dB.
This value is confirmed by measurements at single turbines in the Rhede wind farm
where maximum sound levels rise 4 to 6 dB above minimum sound levels within
short periods of time.

Thirdly, atmospheric stability involves a decrease in large scale turbulence. Large
fluctuations in wind speed (at the scale of a turbine) vanish, and the coherence in
wind speed over distances as great as or larger than the size of an entire wind farm
increases. As a result turbines in the farm are exposed to a more constant wind and
rotate at a more similar speed with less fluctuations. Because of the near-synchronicity,
blade swishes may arrive simultaneously for a period of time and increase swish
level. The phase difference between turbines determines where this amplification
occurs: whether the swish pulses will coincide at a location depends on this phase
difference and the propagation time of the sound. In an area where two or more turbines
are comparably loud the place where this amplification occurs will sweep over the area
with a velocity determined by the difference in rotational frequency. The magnitude
of this effect thus depends on stability, but also on the number of wind turbines and
the distances to the observer. This effect is in contrast to what was expected, as it
seemed reasonable to suppose that turbines would behave independently and thus
the blade swish pulses from several turbines would arrive at random, resulting in an
even more constant level than from one turbine. Also, within a wind farm the effect
may not be noticed, since comparable positions in relation to two or more turbines
are less easily realised at close distances.

Sound level differences L, —L, .. (corresponding to swish pulse heights) within
5 minute periods over long measurement periods near the Rhede wind farm show that
level changes of approximately 5 dB occur for an appreciable amount of time and may
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less often be as high as 8 or 9 dB. This level difference did not decrease with distance,
but even increased 1 dB when distance to the wind farm rose from 400 m to 1500 m.
The added 3-5 dB, relative to a single turbine, is in agreement with simultaneously
arriving pulses from two or three approximately equally loud turbines.

The increase in blade swish level creates a new percept, fluctuating sound, that
is absent or weak in neutral or unstable atmospheric conditions. Blade passing
frequency is now an important parameter as a modulation frequency (not as an infra-
sound frequency). Human perception is most sensitive to modulation frequencies
close to 4 Hz of sound with a frequency of approx. 1 kHz. The hypothesis that
fluctuations are important is supported by descriptions given by naive listeners as
well as residents: turbines sound like ‘lapping’, ‘swishing’, ‘clapping’, ‘beating’ or
‘like the surf’. It is not clear to what degree this fluctuating character determines the
relatively high annoyance caused by wind turbine sound and to a deterioration of
sleep quality. Further research is necessary into the perception and annoyance of
wind turbine sound, with correct assumptions on the level and character of the
sound. Also the sound exposure level of fluctuations in the sound in the bedroom
must be investigated to be able to assess the effects on sleep quality.

It is obvious that in wind turbine sound measurements atmospheric stability must
be taken into account. When the impulsive character of the sound is assessed, this
should be carried out in relation to a stable atmosphere, as that is the relevant
condition for impulsiveness. Also sound immission should be assessed for stable
conditions in all cases where night time is the critical noise period. Wind speed at
low heights is not a sufficient indicator for wind turbine performance. Specifically,
when ambient sound level is considered as a masker for wind turbine sound, neither
sounds should be related to wind speed at reference height via a (possibly implicit)
neutral wind profile. In stable conditions wind induced sound on a microphone
is not as loud as is usually thought (creating a high background level lowering the
‘signal to noise ratio’), as in these conditions hub height wind speeds are accompa-
nied by relatively low microphone height wind speeds. So, wind turbine sound
measurements are easier when performed in a stable atmosphere, which agrees well
with the night being the sensitive period for noise immission.
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LIST OF SYMBOLS
Symbol: definition [unit]

a: angle of attack [radian or degree]

6i*: displacement thickness of turbulent boundary layer [m]

v: kinematic viscosity of air [m? s™']

p: correlation coefficient (here: between (1/3) octave band level and L)
Q: turbine rotor angular velocity [rad s~!]

a: correction factor for boundary layer thickness (value: 2 — 4)

c: velocity of sound in air [m s7!]

C: blade chord length [m]

D,: directivity function [-]

f frequency [Hz]

Jiod: modulation frequency [Hz]

fp cak TE: peak frequency of trailing edge sound [Hz]

fp cakif peak frequency of in-flow turbulence sound [Hz]

I blade passing frequency [Hz]

fi: a-dependent factor for boundary layer thickness [-]

Fyp: fluctuation strength [vacil]

h: height [m]

H: turbine height [m]

h reference height for wind speed (and direction) [m]

k: integer number (of harmonic frequency)

K;: constant (128.5 dB)

K, a dependent increase in trailing edge sound level [dB]

M: Mach number (at radius R: M = QR/c) [-]

AL: increase in sound level [dB]

L,: broad band sound level [dB(A)]

L,s: 5-percentile of broad band sound levels over a time period [dB(A)]
L,os 95-percentile of broad band sound levels over a time period [dB(A)]
m: stability exponent [-]

mf: modulation factor [-]

N: number of blades [-]
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I: distance [m]

R: rotor radius = blade length [m]

AR: increment in R [m]

Ry: range between maximum and minimum sound levels (X= bb or f) [dB]
Ry 00° range between 5- and 95-percentile of sound levels (X= bb or f) [dB]
Re: chord based Reynolds number (Re = QRC/v) [-]

Vi wind speed at height h [m s7!]

Veeft wind speed at reference height [m s™!]

Vil wind speed at height xx m [m s™']

Sp;: 1/3 octave band weighing function for TE sound [dB]
SPL;: sound pressure level [dB]

St: Strouhal number [-]

Subscripts:

A: A-weighted

bb: broad band

f: at frequency of (1 /3) octave band

i: component of TE sound (i =p, s, )
if: in-flow

p: pressure side

s: suction side

TE: trailing edge

APPENDIX |

Dominant Sources of Wind Turbine Sound

With modern wind turbines there are three important mechanisms that produce
sound. These will be reviewed here up to a detail that is relevant to this paper.

A. Infrasound: thickness sound.

When a blade moves through the air, the air on the forward edge is pushed sideways,
moving back again at the rear edge. For a periodically moving blade the air is
periodically forced, leading to ‘thickness sound’. Usually this will not lead to a
significant sound production as the movement is smooth and thus accelerations are
relatively small.

When a blade passes the turbine tower, it encounters wind influenced by the
tower: the wind is slowed down, forced to move sideways around the tower, and
causes a wake behind the tower. For a downwind rotor (i.e. the wind passes the
tower first, then the rotor) this wake causes a significant change in blade loading.

The change in wind velocity near the tower means that the angle of attack of the
air on a blade changes and lift and drag on the blade change more or less abruptly.
This change in mechanical load increases the sound power level at the rate of the
blade passing frequency, f,. For modern turbines f; = N €2/(2m) typically has a value
of approximately 1 Hz. As the movement is not purely sinuoidal, there are harmon-
ics with frequencies kfj, where k is an integer. Harmonics may occur up to 30 Hz,
so thickness sound coincides with the infrasound region (0-30 Hz). Measured levels
at 92 m from the two-bladed 2 MW WTS-4 turbine showed that measured sound
pressure levels of the individual blade harmonics were less than 75 dB, and well
predicted by calculations of wind-blade interaction near the turbine tower [5, 6].
The envelope of the harmonics peaks at the fifth harmonic (k = 5 with f; = 1 Hz),
indicating a typical pulse time of (5 Hz)™! = 0.2 s which is 20% of the time between
consecutive blade passages. The WST-4 is a downwind turbine with an 80 m tubu-
lar tower, where the wind velocity deficit was estimated to be 40% of the free wind
velocity [5]. For modern, upwind rotors the velocity deficit in front of the tower is
smaller. As a consequence blade—tower wake interaction is weaker than for down-
wind turbines. From data collected by Jakobsen it appears that the infrasound level
at 100 m from an upwind turbine is typically 70 dB(G) or lower, near downwind
turbines 10 to 30 dB higher, where 95 dB(G) corresponds to the average infrasound
hearing threshold [28]. Infrasound from (upwind) wind turbines thus does not
appear to be so loud that it is directly perceptible.
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B. Low frequencies: in-flow turbulent sound.
Because of atmospheric turbulence there is a random movement of air superimposed
on the average wind speed. The contribution of atmospheric turbulence to wind tur-
bine sound is named ‘in-flow turbulence sound’ and is broad band sound stretching
over a wide frequency range. For turbulent eddies larger in size than the blade this
may be interpreted as a change in the direction and/or velocity of the incoming flow,
equivalent to a deviation of the optimal angle of attack. This leads to the same
phenomena as in A, but changes will be random (not periodic) and less abrupt.
For turbulent eddies the size of the chord length and less, effects are local and do
not occur coherently over the blade. When the blade cuts through the eddies, the
movement normal to the wind surface is reduced or stopped, given rise to high
accelerations and thus sound.

In-flow turbulence sound has a maximum level in the 1/3 octave band with
frequency:

foer = (St0.7RQ)/(H-0.7R) (A1)

where Strouhal number St is 16.6 [4, 6]. Most sound is produced at the high velocity,
outer parts of the blades. For a modern, tall, three-bladed wind turbine with hub
height H = 100 m, blade length R = 35 m and angular velocity € = 2xf,/3 = 2 rad 57!
(20 rpm), fpwk’if = 11 Hz which is in the infrasound region. Measured fall-off from
fpeahif is initially approx. 3 dB per octave, increasing to 12 dB per octave at frequencies
in the audible region up to a few hundreds of hertz [4, 6].

C. High frequencies: trailing edge sound.

Several flow phenomena at the blade itself or in the turbulent wake behind a blade
cause high frequency sound (‘airfoil self-noise’). Most important for modern tur-
bines is the sound from the turbulent boundary layer at the rear of the blade surface
where the boundary layer is thickest and turbulence strength highest. Trailing edge
sound has a maximum level in the 1/3 octave band with frequency

f;)eak,TE =0.02Q R/(é *MO.s) (Az)

where Mach number M is based on airfoil velocity. The displacement thickness of
the turbulent layer is:

8" = a0.37CRe™**/8 (A3)

for a zero angle of attack. Re is the chord based Reynolds number [29]. The exper-
imental factor a accounts for the empirical observation that the boundary layer is
a factor 2 to 4 thicker than predicted by theory [3, 6]. For air of 10 °C and atmospheric
pressure, a typical chord length C = 1 m, and other properties as given above
(section B), fpeak’TE = 1700/a Hz. With a = 2 to 4, fpeak’TE is 450 — 900 Hz. The
spectrum (see Sp; below) is symmetrical around fp cak g and decreases with 3 dB
for the first octave, 11 dB for the next, the contribution from further octave bands is
negligible [29].

According to Brooks et al. [29] trailing edge sound level can be decomposed in
components SPLp and SPL due to the pressure and suction side turbulent boundary
layers with a zero angle of attack of the incoming flow, and a component SPL that
accounts for a non-zero angle of attack o.. For an edge length AR each of the three
components of the immission sound level at distance r can be written as [29]:

SPL, = 10log(d,” M* ARD, /r*) + Sp, + K, - 3 + K, (A4)

and total trailing edge immission sound level as:

SPL; = 10log(x, 10" (AS)

where the index i refers to the pressure side, suction side or angle of attack part
(i = p, s, o). The directivity function D, equals unity at the rear of the blade
(0 = 180°) and falls off with sin?(6/2). Because of the strong dependence on
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Table Al. Increase of trailing edge sound level with angle of attack o

A | ) 3 4 5
$PL.. (ct) — SPL(ct=0) (dB) 04 1.4 29 14 6.4

M (~ M) trailing edge sound is dominated by sound produced at the high velocity
parts: the blade tips.

Sp; gives the symmetrical spectral distribution of the trailing edge sound spectrum
centered on fp cai 75 and is maximum (0 dB) at this centre frequency. The constant
K, - 3 =125.5 dB applies when the chord based Reynolds number exceeds 8 x 10°
and the pressure-side turbulent boundary displacement thickness 6i*> 1 mm, as is the
case for modern tall turbines. K, is non-zero only if i = a.

For small non-zero angles of attack (o < 5°) the boundary layer thickness shrinks
d" with a factor f, = 1079942 at the pressure-side and grows with a factor f, = 100068«
at the suction-side; 8, = 9., so f = 1.

K, has a large negative value for oo = 0. For 1° < o < 5° and M = 0.2 it can be
approximated by K = 3.6a - 12.1 ([29], formula 49 with K = K,-K,+3).

With equation A4, equation A5 can be rewritten as:

SPL.; =10log(3"M*ARD, /1?)
+ K -3+10 log(zi ]O(IOlog(ﬁ)+Spi+Ki)/10) (A6)

The last term in A6 is the a-dependent part. For the peak frequency 1/3 octave band
level (Sp; = 0) the last term in equation A6 is 3 dB for a =0, and 4.4 dB at o = 2°,
then increasing with approx. 1.7 dB per degree to 9.4 dB at a = 5°. The level
increase relative to the level at a = 0 is given in table Al

The swishing sound that one hears when a blade passes the tower is less than
3 dB (in daytime) [8]. It must correspond to a change in sound level of 1 dB to be
heard at all. An increase of 1 dB corresponds to an increase in o from zero to a value
of 1.7° (0.03 radians), an increase of 2 dB corresponds to 2.5° (0.04 radians). So we
estimate the change in a at the tower passage as 2.1 = 0.4°. Part of this is due to
the lower wind velocity at the lower blade tip relative to the rotor average (0.8°, see
section 3 of main text), the rest is due to the slowinf downb of the wind by the tower.

For small angles the change of wind speed with angle of attack o at radius R is:

dv_. /da=QR (A7)

wind
So for a modern turbine (€2 R = 70 m/s at tip at 20 rpm) the wind speed deficit where
the blade tip passes the tower and o = 2.1° (0.037 radians) is 2.6 m/s. In a (rotor
averaged) 14 m/s wind this is 20%. This deficit is due to the influence of the tower
as well as the (daytime) wind profile.
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